Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.611
Filter
1.
Heliyon ; 10(9): e30330, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726177

ABSTRACT

Background: Colon cancer (CC) stem cells can self-renew as well as expand, thereby promoting tumor progression and conferring resistance to chemotherapeutic agents. The acetyltransferase NAT10 mediates N4-acetylcytidine (ac4C) modification, which in turn drives tumorigenesis, metastasis, stemness properties maintenance, and cell fate decisions. Nonetheless, the specific involvement of ac4C modification mediated by NAT10 in regulating stemness and chemosensitivity in CC remains undetermined. Methods: The levels of NAT10 in normal colon and chemoresistant CC tissues were determined utilizing quantitative real-time polymerase chain reaction alongside immunohistochemistry. Assessing cancer cell stemness and chemosensitivity was conducted by various methods including spheroid and colony formation, western blotting, and flow cytometry. RNA-Seq was used to identify target genes, and RNA immunoprecipitation analysis was used to explore the potential mechanisms. Results: We observed NAT10 overexpression and increased ac4C modification levels in chemoresistant CC tissues. The in vivo and in vitro analysis findings suggested that NAT10 promoted CC cell stemness while suppressing their chemosensitivity. Conversely, Remodelin, a NAT10-specific inhibitor, enhanced CC cell chemosensitivity. Mechanistically, NAT10 increased the level of NANOGP8 ac4C modification and promoted NANOGP8 mRNA stability. Conclusions: NAT10 promotes the maintenance of stemness and chemoresistance in CC cells by augmenting the mRNA stability of NANOGP8. The inhibition of NAT10 via Remodelin improves chemotherapeutic efficacy and impedes CC progression.

4.
Front Physiol ; 15: 1399154, 2024.
Article in English | MEDLINE | ID: mdl-38706947

ABSTRACT

Introduction: The integrity of the erythrocyte membrane cytoskeletal network controls the morphology, specific surface area, material exchange, and state of erythrocytes in the blood circulation. The antioxidant properties of resveratrol have been reported, but studies on the effect of resveratrol on the hypoxia-induced mechanical properties of erythrocytes are rare. Methods: In this study, the effects of different concentrations of resveratrol on the protection of red blood cell mor-phology and changes in intracellular redox levels were examined to select an appropriate concentration for further study. The Young's modulus and surface roughness of the red blood cells and blood viscosity were measured via atomic force microsco-py and a blood rheometer, respectively. Flow cytometry, free hemoglobin levels, and membrane lipid peroxidation levels were used to characterize cell membrane damage in the presence and absence of resveratrol after hypoxia. The effects of oxida-tive stress on the erythrocyte membrane proteins band 3 and spectrin were further investigated by immunofluorescent label-ing and Western blotting. Results and discussion: Resveratrol changed the surface roughness and Young's modulus of the erythrocyte mem-brane, reduced the rate of eryptosis in erythrocytes after hypoxia, and stabilized the intracellular redox level. Further data showed that resveratrol protected the erythrocyte membrane proteins band 3 and spectrin. Moreover, resistance to band 3 pro-tein tyrosine phosphorylation and sulfhydryl oxidation can protect the stability of the erythrocyte membrane skeleton net-work, thereby protecting erythrocyte deformability under hypoxia. The results of the present study may provide new insights into the roles of resveratrol in the prevention of hypoxia and as an antioxidant.

5.
Cancer Manag Res ; 16: 347-359, 2024.
Article in English | MEDLINE | ID: mdl-38707745

ABSTRACT

Baihe Gujin decoction is one of the most commonly used decoction in traditional Chinese medicine for the treatment of lung cancer. It can nourish yin and moisten the lung as well as prevent phlegm from forming and stop coughing. On the one hand, Baihe Gujin decoction is characterized with extensive application, proven efficacy, a long history, and high safety. On the other hand, Baihe Gujin decoction can induce apoptosis of tumor cells, improve immune function and inhibit inflammation. The main anti-tumor components of this include kaempferol, quercetin, isorhamnetin, glycyrrhizin and ß-sitosterol. Clinically, Baihe Gujin decoction can improve the adverse reactions caused by radiotherapy, chemotherapy and immunotherapy for lung cancer, enhance the quality of life of patients, and prolong their survival time. At present, there are a large number of clinical and basic researches on the treatment of lung cancer with Baihe Gujin decoction. In this paper, we mainly discussed the treatment of lung cancer with Baihe Gujin decoction through analyzing basic and clinical researches at home and abroad in the past 20 years. Through the discussion, we aimed to probe deeper into Baihe Gujin decoction for the treatment of lung cancer, thereby providing a broader idea for clinical diagnosis and treatment of lung cancer.

6.
J Sci Med Sport ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38697867

ABSTRACT

OBJECTIVES: We aimed to identify the major determinants of cardiac troponin changes response to exercise among non-elite runners participating in the Beijing 2022 marathon, with a particular focus on the associations with the cardiac function assessed by tissue Doppler echocardiography and speckle tracking. DESIGN: A prospective study. METHODS: A total of 33 non-elite participants in the 2022 Beijing Marathon were included in the study. Echocardiographic assessment and blood sample collection were conducted before, immediately after, and two weeks after the marathon. Blood samples were analyzed using the same Abbot high-sensitivity cTnI STAT assay. Echocardiography included tissue Doppler and speckle tracking echocardiography. RESULTS: Following the marathon, significant increases were observed in cardiac biomarkers, with hs-cTnI elevating from 3.1 [2.3-6.7] to 49.6 [32.5-76.9] ng/L (P < 0.0001). Over 72 % of participants had post-race hs-TnI levels surpassing the 99th percentile upper reference limit. There was a notable correlation between pre-marathon hs-cTnI levels (ß coefficient, 0.56 [0.05, 1.07]; P = 0.042), weekly average training (ß coefficient, -1.15 [-1.95, -0.35]; P = 0.009), and hs-cTnI rise post-marathon. Echocardiography revealed significant post-race cardiac function changes, including decreased E/A ratio (P < 0.0001), GWI (P < 0.0001), and GCW (P < 0.0001), with LVEF (ß coefficients, 0.112 [0.01, 0.21]; P = 0.042) and RV GLS (ß coefficients, 0.124 [0.01, 0.23]; P = 0.035) changes significantly associated with hs-TnI alterations. All echocardiographic and laboratory indicators reverted to baseline levels within two weeks. CONCLUSIONS: Baseline hs-cTnI levels and weekly average training influence exercise-induced hs-cTnI elevation in non-elite runners. Echocardiography revealed post-race changes in cardiac function, with LVEF and RV GLS significantly associated with hs-TnI alterations. These findings contribute to understanding the cardiac response to exercise and could guide training and recovery strategies.

7.
Curr Med Sci ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748372

ABSTRACT

Proton-activated G protein-coupled receptors (GPCRs), initially discovered by Ludwig in 2003, are widely distributed in various tissues. These receptors have been found to modulate the immune system in several inflammatory diseases, including inflammatory bowel disease, atopic dermatitis, and asthma. Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH. This detection triggers downstream signaling pathways within the cells, ultimately influencing the function of immune cells. In this review, we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions.

8.
J Gastrointest Surg ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38703987

ABSTRACT

PURPOSE: The association between the age-adjusted Charlson Comorbidity Index (ACCI) and sarcopenia in patients with gastric cancer (GC) remains ambiguous. This study aimed to investigate the association between the ACCI and sarcopenia and the prognostic value in patients with GC after radical resection. In addition, this study aimed to develop a novel prognostic scoring system based on these factors. METHODS: Univariate and multivariate Cox regression analyses were used to determine prognostic factors in patients undergoing radical GC resection. Based on the ACCI and sarcopenia, a new prognostic score (age-adjusted Charlson Comorbidity Index and Sarcopenia [ACCIS]) was established, and its prognostic value was assessed. RESULTS: This study included 1068 patients with GC. Multivariate analysis revealed that the ACCI and sarcopenia were independent risk factors during the prognosis of GC (P = 0.001 and P < 0.001, respectively). A higher ACCI score independently predicted sarcopenia (P = 0.014). A high ACCIS score was associated with a greater American Society of Anesthesiologists score, higher pathologic TNM (pTNM) stage, and larger tumor size (all P < 0.05). Multivariate analysis demonstrated that the ACCIS independently predicted the prognosis for patients with GC (P < 0.001). By incorporating the ACCIS score into a prognostic model with sex, pTNM stage, tumor size, and tumor differentiation, we constructed a nomogram to predict the prognosis accurately (concordance index of 0.741). CONCLUSION: The ACCI score and sarcopenia are significantly correlated in patients with GC. The integration of the ACCI score and sarcopenia markedly enhances the accuracy of prognostic predictions in patients with GC.

9.
BMC Geriatr ; 24(1): 424, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741040

ABSTRACT

BACKGROUND: Studies examining the potential association between cooking oil and frailty risk in older adults have produced conflicting outcomes. Therefore, our objective was to explore the relationship between cooking oil (vegetable and animal fat oils), changes in oil usage, and the risk of frailty in older adults. METHODS: We included 4,838 participants aged ≥ 65 years without frailty (frailty index < 0.25) from the 2011 wave of the Chinese Longitudinal Healthy Longevity Survey. Follow-up occurred in the 2014 and 2018 waves. Cox proportional hazard models were utilized to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) to examine the association between cooking oil and frailty. Additionally, we evaluated the effect of switching cooking oil on frailty during the follow-up period. RESULTS: During a median follow-up of 3.0 (2.8-6.9) years, 1,348 individuals (27.9%) developed frailty. Compared to those using vegetable oil, users of animal fat oil had a lower risk of frailty (HR = 0.72, 95% CI: 0.61-0.85). Participants who switched from vegetable oil to animal fat oil, as well as those consistently using animal fat oil, had lower risks of frailty with HRs of 0.70 (0.52-0.95) and 0.63 (0.51-0.77) respectively, compared to those who consistently used vegetable oil. Conversely, individuals who switched from animal fat oil to vegetable oil experienced an increased risk of frailty (HR: 1.41, 95% CI: 1.01-1.97). CONCLUSIONS: The utilization of animal fat oil in cooking exhibited a reduced frailty risk among older adults. Conversely, transitioning from animal fat oil to vegetable oil may elevate the risk. These findings propose that substituting vegetable oil with animal fat oil in the diet may safeguard against frailty.


Subject(s)
Cooking , Frailty , Humans , Aged , Male , Female , Frailty/epidemiology , Frailty/prevention & control , Cooking/methods , Cohort Studies , China/epidemiology , Frail Elderly , Aged, 80 and over , Longitudinal Studies , Incidence , Plant Oils , Proportional Hazards Models
10.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38711371

ABSTRACT

T-cell receptor (TCR) recognition of antigens is fundamental to the adaptive immune response. With the expansion of experimental techniques, a substantial database of matched TCR-antigen pairs has emerged, presenting opportunities for computational prediction models. However, accurately forecasting the binding affinities of unseen antigen-TCR pairs remains a major challenge. Here, we present convolutional-self-attention TCR (CATCR), a novel framework tailored to enhance the prediction of epitope and TCR interactions. Our approach utilizes convolutional neural networks to extract peptide features from residue contact matrices, as generated by OpenFold, and a transformer to encode segment-based coded sequences. We introduce CATCR-D, a discriminator that can assess binding by analyzing the structural and sequence features of epitopes and CDR3-ß regions. Additionally, the framework comprises CATCR-G, a generative module designed for CDR3-ß sequences, which applies the pretrained encoder to deduce epitope characteristics and a transformer decoder for predicting matching CDR3-ß sequences. CATCR-D achieved an AUROC of 0.89 on previously unseen epitope-TCR pairs and outperformed four benchmark models by a margin of 17.4%. CATCR-G has demonstrated high precision, recall and F1 scores, surpassing 95% in bidirectional encoder representations from transformers score assessments. Our results indicate that CATCR is an effective tool for predicting unseen epitope-TCR interactions. Incorporating structural insights enhances our understanding of the general rules governing TCR-epitope recognition significantly. The ability to predict TCRs for novel epitopes using structural and sequence information is promising, and broadening the repository of experimental TCR-epitope data could further improve the precision of epitope-TCR binding predictions.


Subject(s)
Receptors, Antigen, T-Cell , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/genetics , Humans , Epitopes/chemistry , Epitopes/immunology , Computational Biology/methods , Neural Networks, Computer , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Antigens/chemistry , Antigens/immunology , Amino Acid Sequence
11.
J Am Chem Soc ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720291

ABSTRACT

Insights into the formation mechanisms of two-dimensional covalent organic frameworks (2D COFs) at both the in-plane and interlayer levels are essential for improving material quality and synthetic methodology. Here, we report the controllable preparation of 2D COF films via on-surface synthesis and investigate the growth mechanism using atomic force microscopy. Monolayer, bilayer, and layer-plus-island multilayer COF films were successfully constructed on hexagonal boron nitride in a controlled manner. The porphyrin-based COF films grow in the Stranski-Krastanov mode, i.e., a uniform bilayer COF film can be formed through layer-by-layer growth in the initial stage followed by island growth starting from the third layer. Furthermore, fluorescence quenching caused by π-π stacking interactions between 2D COF neighboring layers was revealed. These results provide new perspectives on the synthesis of high-quality 2D COF films with controllable thickness and morphology, paving the way for a diverse range of applications.

12.
Front Immunol ; 15: 1372692, 2024.
Article in English | MEDLINE | ID: mdl-38720884

ABSTRACT

Background: The tertiary lymphatic structure (TLS) is an important component of the tumor immune microenvironment and has important significance in patient prognosis and response to immune therapy. However, the underlying mechanism of TLS in soft tissue sarcoma remains unclear. Methods: A total of 256 RNAseq and 7 single-cell sequencing samples were collected from TCGA-SARC and GSE212527 cohorts. Based on published TLS-related gene sets, four TLS scores were established by GSVA algorithm. The immune cell infiltration was calculated via TIMER2.0 and "MCPcounter" algorithms. In addition, the univariate, LASSO, and multivariate-Cox analyses were used to select TLS-related and prognosis-significant hub genes. Single-cell sequencing dataset, clinical immunohistochemical, and cell experiments were utilized to validate the hub genes. Results: In this study, four TLS-related scores were identified, and the total-gene TLS score more accurately reflected the infiltration level of TLS in STS. We further established two hub genes (DUSP9 and TNFSF14) prognosis markers and risk scores associated with soft tissue sarcoma prognosis and immune therapy response. Flow cytometry analysis showed that the amount of CD3, CD8, CD19, and CD11c positive immune cell infiltration in the tumor tissue dedifferentiated liposarcoma patients was significantly higher than that of liposarcoma patients. Cytological experiments showed that soft tissue sarcoma cell lines overexpressing TNFSF14 could inhibit the proliferation and migration of sarcoma cells. Conclusion: This study systematically explored the TLS and related genes from the perspectives of bioinformatics, clinical features and cytology experiments. The total-gene TLS score, risk score and TNFSF14 hub gene may be useful biomarkers for predicting the prognosis and immunotherapy efficacy of soft tissue sarcoma.


Subject(s)
Biomarkers, Tumor , Immunotherapy , Sarcoma , Tumor Microenvironment , Humans , Sarcoma/genetics , Sarcoma/therapy , Sarcoma/immunology , Sarcoma/diagnosis , Biomarkers, Tumor/genetics , Prognosis , Immunotherapy/methods , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Gene Expression Regulation, Neoplastic , Female , Male , Tumor Necrosis Factor Ligand Superfamily Member 14/genetics , Gene Expression Profiling , Single-Cell Analysis
13.
J Electromyogr Kinesiol ; 76: 102885, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38723398

ABSTRACT

Spinal cord injury (SCI) resulting in complex neuromuscular pathology is not sufficiently well understood. To better quantify neuromuscular changes after SCI, this study uses a clustering index (CI) method for surface electromyography (sEMG) clustering representation to investigate the relation between sEMG and torque in SCI survivors. The sEMG signals were recorded from 13 subjects with SCI and 13 gender-age matched able-bodied subjects during isometric contraction of the biceps brachii muscle at different torque levels using a linear electrode array. Two torque representations, maximum voluntary contraction (MVC%) and absolute torque, were used. CI values were calculated for sEMG. Regression analyses were performed on CI values and torque levels of elbow flexion, revealing a strong linear relationship. The slopes of regressions between SCI survivors and control subjects were compared. The findings indicated that the range of distribution of CI values and slopes was greater in subjects with SCI than in control subjects (p < 0.05). The increase or decrease in slope was also observed at the individual level. This suggests that the CI and its sEMG clustering-torque relation may serve as valuable quantitative indicators for determining neuromuscular lesions after SCI, contributing to the development of effective rehabilitation strategies for improving motor performance.

14.
Sci Total Environ ; : 173053, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38723973

ABSTRACT

Nitrochlorobenzene (NCB) is very common in pesticide and chemical industries, which has become a major problem in soil environment. However, the remediation of NCB contaminated soil is received finite concern. Using biochar as a substrate for nanoscale-zero valent iron (nZVI/p-BC) to activate peroxodisulfate (PDS), a novel heterogeneous oxidative system had been applied in the current study to remediate NCB contaminants in soil. The degradation efficiencies and kinetics of m-NCB, p-NCB, and o-NCB by various systems were contrasted in soil slurry. Key factors including the dosage of nZVI/p-BC, the molar ratio of nZVI/PDS, initial pH and temperature on degradation of NCB were further examined. The results confirmed that the nZVI/p-BC/PDS displayed the remarkable performance for removing NCB compared with other systems. Higher temperature with nZVI/PDS molar ratio of 2:1 under the acidic condition favored the reduction of NCB. The treatment for NCB with optimal conditions were evaluated for the engineering application. The mechanism of nZVI/p-BC/PDS indicated that electron transfer between p-BC and nZVI was responsible for activation of PDS, generating active species (SO4•-, •OH and 1O2) via both the free and non-free radical pathways. Experimental results revealed prominent availability of nZVI/p-BC/PDS system in remediation of actual contaminated field by NCB.

15.
Org Biomol Chem ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716633

ABSTRACT

An efficient and practical one-pot synthesis of isoindolines from readily available starting materials was achieved under mild conditions by implementing an isoindole umpolung strategy. A variety of isoindolines were prepared with good to excellent yields. Biological screens of these identified compounds demonstrated that they are potent potentiators of colistin for multi-drug resistant Acinetobacter baumannii.

16.
Chem Sci ; 15(17): 6421-6431, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38699264

ABSTRACT

Photodynamic immunotherapy (PDI) is an innovative approach to cancer treatment that utilizes photodynamic therapy (PDT) and photosensitizers (PSs) to induce immunogenic cell death (ICD). However, currently most commonly used PSs have restricted capabilities to generate reactive oxygen species (ROS) via a type-II mechanism under hypoxic environments, which limits their effectiveness in PDI. To overcome this, we propose a novel approach for constructing oxygen independent PSs based on stable organic free-radical molecules. By fine-tuning the characteristics of tris(2,4,6-trichlorophenyl)-methyl (TTM) radicals through the incorporation of electron-donating moieties, we successfully found that TTMIndoOMe could produce substantial amounts of ROS even in hypoxic environments. In vitro experiments showed that TTMIndoOMe could effectively produce O2˙-, kill tumor cells and trigger ICD. Moreover, in vivo experiments also demonstrated that TTMIndoOMe could further trigger anti-tumor immune response and exhibit a superior therapeutic effect compared with PDT alone. Our study offers a promising approach towards the development of next-generation PSs functioning efficiently even under hypoxic conditions and also paves the way for the creation of more effective PSs for PDI.

17.
Bioresour Technol ; 402: 130762, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38692371

ABSTRACT

Ionic cadmium (Cd (II)) in water is a significant threat to ecosystems, the environment, and human health. Research is currently focused on developing efficient adsorption materials to combat Cd (II) pollution in water. One promising solution involves co-pyrolyzing solid residue from anaerobic digestion of food waste with oil-based drill cuttings pyrolysis residue to create a biochar with high organic matter content. This biochar has a lower heavy metal content and leaching toxicity compared to China's national standards, making it both safe and resourceful. It exhibits a high adsorption capacity for Cd (II) in water, reaching up to 47.80 ± 0.37 mg/g. Raising the pyrolysis temperature above 600 °C and increasing the amount of pyrolysis residue beyond 30 % enhances the biochar's adsorption capacity. The adsorption process is primarily driven by mineral precipitation, offering a promising approach for dual waste resource management and reducing heavy metal pollution.

18.
J Cell Mol Med ; 28(9): e18296, 2024 May.
Article in English | MEDLINE | ID: mdl-38702954

ABSTRACT

We investigated subarachnoid haemorrhage (SAH) macrophage subpopulations and identified relevant key genes for improving diagnostic and therapeutic strategies. SAH rat models were established, and brain tissue samples underwent single-cell transcriptome sequencing and bulk RNA-seq. Using single-cell data, distinct macrophage subpopulations, including a unique SAH subset, were identified. The hdWGCNA method revealed 160 key macrophage-related genes. Univariate analysis and lasso regression selected 10 genes for constructing a diagnostic model. Machine learning algorithms facilitated model development. Cellular infiltration was assessed using the MCPcounter algorithm, and a heatmap integrated cell abundance and gene expression. A 3 × 3 convolutional neural network created an additional diagnostic model, while molecular docking identified potential drugs. The diagnostic model based on the 10 selected genes achieved excellent performance, with an AUC of 1 in both training and validation datasets. The heatmap, combining cell abundance and gene expression, provided insights into SAH cellular composition. The convolutional neural network model exhibited a sensitivity and specificity of 1 in both datasets. Additionally, CD14, GPNMB, SPP1 and PRDX5 were specifically expressed in SAH-associated macrophages, highlighting its potential as a therapeutic target. Network pharmacology analysis identified some targeting drugs for SAH treatment. Our study characterised SAH macrophage subpopulations and identified key associated genes. We developed a robust diagnostic model and recognised CD14, GPNMB, SPP1 and PRDX5 as potential therapeutic targets. Further experiments and clinical investigations are needed to validate these findings and explore the clinical implications of targets in SAH treatment.


Subject(s)
Biomarkers , Deep Learning , Machine Learning , Macrophages , Single-Cell Analysis , Subarachnoid Hemorrhage , Subarachnoid Hemorrhage/genetics , Subarachnoid Hemorrhage/metabolism , Animals , Macrophages/metabolism , Single-Cell Analysis/methods , Rats , Biomarkers/metabolism , Male , Gene Expression Profiling , Transcriptome , Rats, Sprague-Dawley , Disease Models, Animal , Neural Networks, Computer , Molecular Docking Simulation
19.
Foods ; 13(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731742

ABSTRACT

Background: A diet high in purines can impair the function of the gut microbiota and disrupt purine metabolism, which is closely associated with the onset of hyperuricemia. Dietary regulation and intestinal health maintenance are key approaches for controlling uric acid (UA) levels. Investigating the impacts of fermented foods offers potential dietary interventions for managing hyperuricemia. Methods: In this study, we isolated a strain with potent UA-degrading capabilities from "Jiangshui", a fermented food product from Gansu, China. We performed strain identification and assessed its probiotic potential. Hyperuricemic quails, induced by a high-purine diet, were used to assess the UA degradation capability of strain JS-3 by measuring UA levels in serum and feces. Additionally, the UA degradation pathways were elucidated through analyses of the gut microbiome and fecal metabolomics. Results: JS-3, identified as Lacticaseibacillus paracasei, was capable of eliminating 16.11% of uric acid (UA) within 72 h, rapidly proliferating and producing acid within 12 h, and surviving in the gastrointestinal tract. Using hyperuricemic quail models, we assessed JS-3's UA degradation capacity. Two weeks after the administration of JS-3 (2 × 108 cfu/d per quail), serum uric acid (SUA) levels significantly decreased to normal levels, and renal damage in quails was markedly improved. Concurrently, feces from the JS-3 group demonstrated a significant degradation of UA, achieving up to 49% within 24 h. 16S rRNA sequencing revealed JS-3's role in gut microbiota restoration by augmenting the probiotic community (Bifidobacterium, Bacteroides unclassified_f-Lachnospiraceae, and norank_fynorank_o-Clostridia_UCG-014) and diminishing the pathogenic bacteria (Macrococus and Lactococcus). Corresponding with the rise in short-chain fatty acid (SCFA)-producing bacteria, JS-3 significantly increased SCFA levels (p < 0.05, 0.01). Additionally, JS-3 ameliorated metabolic disturbances in hyperuricemic quails, influencing 26 abnormal metabolites predominantly linked to purine, tryptophan, and bile acid metabolism, thereby enhancing UA degradation and renal protection. Conclusions: For the first time, we isolated and identified an active probiotic strain, JS-3, from the "Jiangshui" in Gansu, used for the treatment of hyperuricemia. It modulates host-microbiome interactions, impacts the metabolome, enhances intestinal UA degradation, reduces levels of SUA and fecal UA, alleviates renal damage, and effectively treats hyperuricemia without causing gastrointestinal damage. In summary, JS-3 can serve as a probiotic with potential therapeutic value for the treatment of hyperuricemia.

20.
Bioresour Technol ; 401: 130708, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636878

ABSTRACT

In this study, the biochemical response of Phaeodactylum tricornutum to varying concentrations of inorganic selenium (Se) was investigated. It was observed that, when combined with fulvic acid, P. tricornutum exhibited enhanced uptake and biotransformation of inorganic Se, as well as increased microalgal lipid biosynthesis. Notably, when subjected to moderate (5 and 10 mg/L) and high (20 and 40 mg/L) concentrations of selenite under fulvic acid treatment, there was a discernible redirection of carbon flux towards lipogenesis and protein biosynthesis from carbohydrates. In addition, the key parameters of microalgae-based biofuels aligned with the necessary criteria outlined in biofuel regulations. Furthermore, the Se removal capabilities of P. tricornutum, assisted by fulvic acid, were coupled with the accumulation of substantial amounts of organic Se, specifically SeCys. These findings present a viable and successful approach to establish a microalgae-based system for Se uptake and biotransformation.


Subject(s)
Benzopyrans , Biofuels , Biotransformation , Diatoms , Diatoms/metabolism , Benzopyrans/metabolism , Selenious Acid/metabolism , Microalgae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...